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SUMMARY

A new technique, denaturing high-performance liquid chromatography (dHPLC), allows for detection
of any heterozygous sequence variation in a gene without prior knowledge of the precise location
of the sequence change. The results of a dHPLC analysis are recorded in real-time in the form of a
chromatogram that is sequence-speci�c. In this paper we present methods to classify an individual, based
on the observed chromatogram, as a homozygous wild-type or a carrier of a speci�c variant for the given
DNA segment by comparison to representative chromatograms that are obtained from the training set of
individuals with known variant status. The �rst approach consists of �nding a parsimonious parametric
model and then classifying each newly observed curve based on comparing the most discriminating
characteristic, the main mode, to the main mode of the training curves. The second approach consists
of �nding empirical estimates of the modes of each chromatogram and using a bootstrap test for equality
with the corresponding estimates of the training curves. We apply both methods to data on the breast
cancer susceptibility gene BRCA1 and test the performance of the methods on independent samples.
Published in 2002 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Historically, DNA polymorphisms and mutations were detected by routine sequencing e�orts,
an approach that is costly and slow.
Denaturing high-performance liquid chromatography (dHPLC) is a relatively new, fast and

inexpensive procedure for detection of any heterozygous sequence variation in a gene segment,
known as an amplicon, without prior knowledge of the exact location of the sequence change.
Unlike complete DNA sequencing, dHPLC does not indicate the exact base pair change, but
its high sensitivity and speci�city and its low cost make dHPLC one of the most powerful
and increasingly popular tools for discovering and analysing genetic variation in the human
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Figure 1. Training curves for amplicon 1-20.

and other genomes. Mutational analysis of candidate genes in germline and somatic mutations
using dHPLC has applications to such conditions as neuroblastoma [1], prostate cancer [2],
atherosclerosis [3] and ovarian tumours [4]. Other applications of dHPLC include the assem-
bling of extensive catalogues of single nucleotide polymorphisms (SNPs) in candidate genes
for particular diseases that can be used in association studies.
Figure 1 illustrates the results of a dHPLC analysis for amplicon 1-20 of the breast cancer

susceptibility gene BRCA1 for six individuals, four of whom are normal or ‘wild-type’, and
two have a sequence change, and belong thus to the ‘variant’ (mutation, polymorphism) car-
riers. The ordinate in this �gure is absorbance, which measures DNA concentration eluting
from the chromatographic column, and the abscissa denotes time since the beginning of the
elution process, that is, the retention time. For reasons explained in Section 2, curves cor-
responding to wild-type DNA have longer retention time distributions than curves based on
variant DNA. Thus, based on these features of the observed chromatogram, a person can be
classi�ed as a homozygous wild-type or a carrier of a speci�c variant for the given DNA
segment.
Currently, variants are detected ‘by eye’, based on a comparison with curves from a train-

ing sample of individuals with known variant status. This is a tedious, time-consuming and
highly subjective process prone to variation in interpretation. In this paper we develop a
robust characterization of the chromatograms and a statistical procedure that allows one to
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automate the classi�cation of the observed curves by carrier status based on comparison to the
training set.
The dHPLC technique and the resulting curve data are described in more detail in Sec-

tion 2. We present two approaches to classi�cation in Sections 3 and 4, respectively. The �rst
approach, motivated by a traditional way of analysing chromatograms [5], consists of �nding
a parsimonious parametric model that captures the main features of the training curves well
and then classifying each newly observed curve by comparing the most discriminating char-
acteristic, the main mode, to the main mode of the training curves. In the second approach,
empirical estimates of the modes of each chromatogram are obtained, and a bootstrap test
for equality with the corresponding estimates of the training curves is then carried out. In
Section 5 we apply both methods to data on the breast cancer susceptibility gene BRCA1.
We conclude in Section 6 with a discussion of our work and future directions of research.
Our work was motivated by ongoing research in the Laboratory of Population Genetics

of the National Cancer Institute on genes that in�uence the risk of breast cancer. Mutations
in BRCA1 and BRCA2 have been shown to predispose women to early-onset breast cancer
and other malignancies. While three mutations, the so-called ‘founder mutations’, have been
extensively studied in Ashkenazi Jewish populations, little is known about other variants in
these two genes. An ongoing project seeks to identify other variants and complete the analysis
of both BRCA1/2 in a population based series of breast cancer cases from the U.S. Radiologic
Technologist Health Study. This analysis will yield estimates of mutation prevalence and will
permit future analyses of breast cancer risk factors in this cohort to be strati�ed on BRCA1/2
status.

2. DATA DESCRIPTION

2.1. The dHPLC procedure

In dHPLC analysis a speci�c region of DNA, an amplicon, ranging from 200 to 700 base-
pairs, is ampli�ed by polymerase chain reaction (PCR). The product is heated to 95 degrees,
to separate the DNA strands, and then slowly cooled, allowing the DNA to reanneal less
stringently. Figure 2 is a schematic presentation of heteroduplex formation for a heterozy-
gous mutation carrier. In this example, the reannealing results in the original two types of
homoduplexes (A–T and G–C) and in two additional types of heteroduplexes that are mix-
tures of the wild-type and mutant strands (A–C and G–T). The non-Watson–Crick base pairs
A–C and G–T form a ‘bubble’. Each of the resulting four duplexes will pass through the
dHPLC system at a di�erent speed, and the results are recorded in real-time in the form of
a chromatogram (for further detail, see, for example, reference [6]). The retention times of
the heteroduplexes and homoduplexes are thus sequence-speci�c. They depend on the mis-
matched base-pairs, the nearest neighbour sequences of the mismatched base-pair [7] and the
hydrogen bonding between the non-Watson–Crick paired bases [8]. In the absence of the
in�uence of other factors, the example presented in Figure 2 would result in a curve with
four distinct peaks. The peaks corresponding to the heteroduplexes would occur earlier than
the peaks for the homoduplexes, because the non-Watson–Crick bases are less stable, as they
are partially denatured, and thus elute from the chromatographic column faster. If an individ-
ual were homozygous, either wild-type or mutant, the reannealing would result in a single
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Figure 2. Heteroduplex formation.

type of homoduplex, and thus a single peak. The location of the mode of the homozygous
curve is sequence-speci�c as well, so it is still possible to distinguish between the wild-
type and the mutation carrier. In practice, though, the probability of a homozygous mutant is
negligible.
In principle, one should thus be able to distinguish wild-type and variant carriers by the

number of peaks observed in their chromatograms. In practice, four peaks are rarely observed,
for any given DNA segment. Sequence-speci�c characteristics, such as the in�uence of the
neighbouring pairs, can cause the retention times for the heteroduplexes and homoduplexes
to be so close together that the result is a bimodal, or even unimodal, curve, in which case
the location of the mode is shifted to the left of the wild-type modes.
There is also variation between curves of the same class, due to variations in PCR, such

as concentration of DNA, melting temperature used, variation in magnesium concentration,
and di�erent primer characteristics. The absolute heights of the modes and the area under the
curve are proportional to the amount of DNA used in the analysis, which may be di�cult
to control precisely. The relative height of the modes, compared to the highest one, and
the location of modes are not much in�uenced by variations in DNA concentration. Our
classi�cation procedure thus focuses on these characteristics. For the BRCA1 data, as well
as for various other unreported data, the location of the maximal mode emerges as the most
reliable discriminating feature.

2.2. The basic model

The data consist of chromatograms each corresponding to a subject whose PCR-ampli�ed
DNA segment was analysed using dHPLC. Following an approach discussed in Rice and
Silverman [9], we consider each sample curve to arise from the model

Y �(t)=��(t) + ��; 06t6T (1)
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where Y denotes the absorbance, t the retention time of the chromatogram, and E(Y �(t))=��(t)
is the mean of the �th variant (�¿1) observed in the analysed DNA segment. The instrument
error is denoted by �. The sample consists of m curves, each a realization of Y �(t) for some �,
observed at times t1; t2; : : : ; tni , i=1; 2; : : : ; m. The observation yij=yi(tj) denotes the jth point
of the ith curve, i=1; : : : ; m, j=1; : : : ; ni. All chromatograms are based on equidistant time
points and on the same number of observed points; that is, ni=n for i=1; 2; : : : ; m. Our goal
is to classify each person in the sample as the carrier of variant � based on observation of
Y � and information available from a training data set. The total number of variants that can
be observed for the analysed DNA region is not known a priori, in contrast to standard clas-
si�cation analysis, and thus the number of classes obtained from the training data is merely
a lower bound. It is conceivable that a person carries a variant that was not observed in the
training data. In this case, it would be appropriate to reject the hypothesis that the person
belongs to any previously observed class.
A general approach to classifying the amplicons would be by comparison of their means

��, �=1; 2; : : : : This is di�cult, not in the least because it is an in�nite dimensional problem.
Procedures for comparing mean curves rely on the global shape of the curves [10–12]. These
methods are sensitive to contaminations that may in�uence certain regions of the curve, such
as the tails, more heavily than others.
Motivated by the physical process that generates the chromatograms as described in Section

2.1, we classify the curves based on a more speci�c feature, the location of the modes, and
in a further simpli�cation, the location of the main mode, instead of estimating and testing
for the whole mean function ��.
The basic classi�cation procedure we develop is carried out as follows. First, the location

and heights of the modes, for each ��, are estimated for curves derived from individuals with
known variant status determined by sequencing. Next, the location and heights of the modes
are estimated for each newly observed curve and compared to the estimates obtained from the
training set. The length of the analysed DNA segments and the fact that variants are relatively
rare within a segment imply that the anticipated number of di�erent variants in each amplicon
is small. In particular, in the BRCA genes the number of di�erent variants does not exceed
two or three for most amplicons. Nonetheless, if a new chromatogram cannot be categorized
into any of the previously observed classes, sequencing the DNA is recommended to identify
the true variant status and perhaps discover a new variant.

3. CLASSIFICATION OF THE CHROMATOGRAMS: A PARAMETRIC APPROACH

3.1. The individual curve model

We �rst estimate the location of the peaks and their associated heights based on a parametric
mixture model that follows an approach presented in Robin [5]. The observed chromatogram
(or thermogram, in the context of reference [5]) y is modelled as

y�(t;!�)=�(t;!�) + �� (2)

where !� is a set of parameters speci�c to curve category �. The error term is assumed to be
independent across time and normally distributed with mean zero and variance �2. The mean
function ��=E(Y �) is modelled by a mixture of several curves, each corresponding to a peak
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in the chromatogram

��(t;!�)=
K�∑
i=1
’(t; ��i )

Several choices for ’ are suggested in reference [5]: the linear-Gaussian model, the Gaussian-
exponential model, and the Gaussian-Gaussian model. In our problem the Gaussian-Gaussian
model and, in a slight modi�cation, the exponential-Gaussian model seem to be the best
choices for a peak model based on comparison of the residual sums of squares of the models.
We thus parameterize ’ as

’(t; �)=



he

−�2(t−s)2
2 if t6s

he
−�2(t−s)2

2 otherwise

for the Gaussian-Gaussian model, or

’(t; �)=



he−�(t−s) if t6s

he
−�2(t−s)2

2 otherwise

for the exponential-Gaussian model with �=(h; �; s; �). The parameters have the following
interpretation: h denotes the height of the peak; s the location, and �; � the ‘thickness’ of
the ascending and descending parts, respectively. Notice that this model is not a mixture
of probability density functions, but a non-linear regression model. For a �xed K� we have
!�=(�′1; : : : ; �

′
K�)

′. The elements of !� are estimated by minimizing the sum of squares

SSE(!�)=
n∑
j=1
(yj − �(tj;!�))2 (3)

Under the assumption that �∼N(0; �2In), the resulting non-linear least squares estimator !̂
of ! is also the MLE and

√
n( !̂ −!) D→N(0; �2S−1) (4)

S is the uniform asymptotic limit of the matrix

1
n

n∑
j=1

@�(tj;!)
@!

@�(tj;!)
@!′ =

1
n
F′(!)F(!)

where F(!)=(Fjk(!))=(@�(tj;!)=@!k) is a n×4K� matrix of partial derivatives. For large n
and under appropriate regularity conditions we have approximately

!̂� −!�∼N(0; �2(F′(!�)F(!�))−1)

following reference [10]. The covariance matrix of the 4K� non-linear least squares estimates
!̂�, cov( !̂�) can then be approximated by

ĉov( !̂�)= �̂2(F′( !̂�)F( !̂�))−1 (5)

where (F′(!�)F(!�))−1 is evaluated at !̂�, and the unbiased estimate �̂2=(n−4K�)−1∑(yj−
�(tj; !̂�))2 is used.
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To determine the number of components K� in the non-parametric regression function, we
�t a series of models with an increasing number of components and select the most plausible
model by computing the Bayes information criterion (BIC). As we expect at most four peaks
in each chromatogram, we restrict our models to K�64 components, to avoid over�tting.
Alternatively, one could use a likelihood ratio test statistic for model selection [5].

3.2. The superpopulation model

There are two kinds of variability in the chromatograms. The �rst kind is variability speci�c
to the individual observation yij. This kind of variability represents the measurement error
and is accounted for in model (2) through the error term �. The second kind of variability
is related to the whole chromatogram and can be thought of as representing curve-speci�c
variation that arises from variations in genotyping, such as temperature, DNA concentration,
or the presence of contaminants.
To account for chromatogram-speci�c variation, we assume that for a given variant �,

the parameter !�i in model (2) for the ith curve is the realization from a superpopulation
model !�i ∼N(!�;�0), with a variant-speci�c mean parameter !� and covariance function �0.
Under this model the estimates !̂�i have the conditional distribution !̂

�
i |!�i ∼N(!�i ;��i ); where

��i =�
2(F′(!�i )F(!�i ))−1. Unconditionally, we get that

!̂�i ∼N(!�;�0 + ��i ) (6)

To estimate the superpopulation parameters !� and �0 based on observations !̂�i ;�
�
i ;

i=1; : : : ; k� from the training set, several di�erent approaches such as REML, MLE or em-
pirical Bayes can be considered. We use the sample mean, !̂�=

∑k�

i=1!
�
i =k

�, and estimate
�̂0 by

�̂0=�̂
k�

! − 1
k�

k�∑
i=1
��i

where �̂k
�

! denotes the sample variance of !̂� based on all k� curves in the training set that
fall into class �.

3.3. The parametric classi�cation algorithm

To classify a new chromatogram, we �rst �t model (2) to the new curve. Let !̂� denote the
estimated superpopulation parameters of the training curves for mutation status � and !̂(new)

the estimated parameter vector of the new curve. The vector !̂(new) also has distribution (6).
Since the chromatograms in the training set are independent of the newly observed curve, !̂�

and !̂(new) are also independent.
In many amplicons, such as 1-11G in BRCA1, the wild-type curves appear unimodal while

the variant, as for example variant one in Figure 3, is clearly bimodal. Figure 1 plots the
training curves for amplicon 1-20 in BRCA1, which include �ve wild-type curves and two
curves of variant one. Observe that for this amplicon the wild-type as well as the variant
curves appear bimodal. When we plotted the estimates for the locations of both modes, we
saw that they did not discriminate the curves. This can also be seen by looking at the curves
directly – the location of the second largest mode of the variant one curves and the main
mode of the wild-type curves are extremely close. On the other hand, when we focused
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Figure 3. Training curves for amplicon 1-11G.

on the location of the main mode, the wild-type chromatograms separated well from the
variant curves. We thus identify mutation status by the abscissa of the maximal mode in
each curve, even when they appear to have more than one mode. The classi�cation algo-
rithm is easily extended to more complex features, which may be more appropriate for other
amplicons.
Let s�max, based on the superpopulation parameter !

�, be the abscissa of the largest mode
for mutation status �=1; 2; : : : ; and let s(new)max be the abscissa of the largest mode of the can-
didate curve whose mutation status is to be classi�ed. For a chosen parameterization, the
estimate of the abscissa of the maximal mode of the chromatogram coincides with the loca-
tion component ŝi of !̂ that has the largest height associated with it. Accordingly, let ŝ �max
and ŝ (new)max be their respective estimates. The hypotheses of interest are H�

0 : s
(new)
max =s�max versus

H�
1 : s

(new)
max �= s�max.

Using the independence of the two estimators and (6), a test statistic for testing H�
0 is

Z�=
ŝ �max − ŝ (new)max√{�̂2(s�max) + �̂2(s(new)max )}

(7)

If s�max denotes the lth component of !
�, �̂2(s�max) is given by

�̂2(s�max)=
1
k�
(�̂0)ll +

1
(k�)2

k�∑
j=1
(�̂i)ll

Published in 2002 by John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3447–3464



CURVE CLASSIFICATION 3455

and �̂2(s(new)max ) by

�̂2(s(new)max )=(�̂0)ll + (�̂
(new)
i )ll

Under the null hypothesis Z� follows a tk�−1 distribution, and the rejection region is de�ned
accordingly. As we reduce the dimensionality of the parameter space for classi�cation, it is
not necessary to estimate all elements of �0, which may be problematic if there are only a
few curves in the training set.
Our classi�cation algorithm can be summarized as follows:

1. Find the best �tting model for each class in the training set and �nd the estimates of the
location of the maximal modes based on the corresponding model. Get the superpopula-
tion parameter estimates.

2. Fit the parametric model to the newly observed curve and get the estimates of the location
of the maximal mode and its variance.

3. Starting with �=wild-type, compute the test statistic Z� for H�
0 . If H

�
0 cannot be rejected

for class � in the training set, then the new observation is classi�ed into the same
category. If H�

0 is rejected, test H
�+1
0 . A detailed description of the ordering of the

hypotheses is given in the next paragraph.
4. If all H�

0 s have to be rejected, sequence the DNA to determine the true carrier status.
5. Update the training set. Classify the next curve.

In our application the training data were chosen not randomly but rather in the hope of
covering as many variants as possible. For the BRCA genes this goal can be achieved by
sequencing only breast cancer cases. If the training data were a completely random sample
of the population, a Bayesian classi�cation approach could be pursued. A prior probability
of being a member of a given class could be estimated from the training data, with a sub-
jectively chosen prior probability of being in none of the classes of the training set. The
classi�cation procedure would then consist of assigning the new observation to the class with
the largest posterior probability of the largest mode, given the observed data. Even when
the training set constitutes a random sample, determining the prior probability of belonging
to a new class can be challenging, as for example in populations prone to admixture. The
‘not seen before’ class may be quite large as many di�erent variants can be present. For
the data we consider, estimation of prior probabilities is not feasible, but we still incorpo-
rate some prior knowledge about how likely membership to a given class is by ordering
the H�

0 s. As the wild-type is the most common class, we start by testing whether a curve
falls into this category. The other hypotheses may be tested in order of frequency of occur-
rence of the variants, so as to re�ect some prior knowledge about the probability of class
membership.

4. A BOOTSTRAP CLASSIFICATION PROCEDURE

In this section we describe a simple classi�cation approach for the situation when only the
main mode for discrimination is required. The variability speci�c to individual curves is fairly
small, resulting in a visual impression of a roughly noiseless curve, save for the discontinuities
imposed by the discrete, though very �ne, time grid. Instead of �tting a parametric model to
the observations, or smoothing the curves, we use the raw data to obtain an empirical estimate
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of the abscissa of the main mode directly from each curve by choosing the t value that has
the largest curve reading associated with it. We postulate the following model for the abscissa
of the largest mode:

s�max; i=s
�
max + �

�
i ; i=1; : : : ; k�

where � indicates the mutation status, k� denotes the number of curves in class � in the
training set and ��i is a normal random variable centred at zero with variance �20 . To draw the
connection to the superpopulation model from the previous section, estimates ŝ �max; i of s

�
max; i

have variance �20 +�
2
i , where the �

2
0 component of the variance accounts for the between-curve

variation and the term �2i denotes the within-curve variation.
Let (y�i1; y

�
i2; : : : ; y

�
in)

′; i=1; : : : ; k�; represent the curves with mutation status �=1; 2; : : : ; and
let ŝ �max; i denote the observed abscissa of the largest mode of the ith curve of mutation status �.
As the time grid becomes �ner, that is, as n→∞, and the number of the curves of mutation
status � becomes larger, that is, as k�→∞, �s�max=

∑
i ŝ
�
max; i=k

�→ s�max.
To test the null H�

0 : s
(new)
max =s�max at level �, we propose to �nd a 100(1− �) per cent level

con�dence interval around the di�erence d�=s�max−s(new)max under H�
0 and reject H

�
0 if ŝ

(new)
max falls

outside this con�dence interval. Unfortunately, the available number of curves per mutation
status in the training set is often quite small, which makes the assumption of normality
unreasonable and limits our ability to estimate the variance term. To �nd an approximate
100(1 − �) per cent con�dence interval for d�, we thus use the � level cut-o� points of the
empirical distribution function of the di�erences, obtained utilizing the following bootstrap
approach: take a bootstrap sample of size k�+1 from the k� curves of class � in the training
set

y�b1·; y
�
b2·; : : : ; y

�
bk� ·; y

�
b(k�+1)·

where bi denotes the index of the ith curve in the bth bootstrap sample, and · stands for
all points on this curve. The �rst k� curves represent the bootstrap training set, and the
(k� + 1)th curve represents the ‘new’ curve under H0. We then compute the empirical esti-
mates for the modes; that is, we �nd ŝ �max; bi , the abscissa of the largest mode of the curve
y�bi·, for i=1; : : : ; k

� + 1. The mean for the bth bootstrap sample is based on the �rst k�

curves, �s�max; b=
∑k�

1 ŝ
�
max; bi =k

�, and the abscissa of the main mode of the ‘new’ curve is
ŝ (new)max; b= ŝ

�
max; b(k�+1)

. Calculate d�b=�s
�
max; b − ŝ (new)max; b for b=1; : : : ; B.

The bootstrap yields B estimates of the di�erence of the mean of the abscissae of the
maximal modes in the training set and the abscissa of the maximal mode of the new curve.
To test H�

0 : s
(new)
max =s�max at level �, compute the cut-o� points û1−�=2 and û�=2 from the empirical

distribution function of the bootstrapped di�erences d�1 = �s
�
max;1 − ŝ (new)max;1; : : : ; d

�
B=�s

�
max; B − ŝ (new)max; B

such that

P(d�b¿û1−�=2) = �=2

P(d�b6û�=2) = �=2

To classify a new observation, �nd the location of its largest mode ŝ (new)max and check whether
the observed di�erence between the mean of the locations of the modes of the training curves
in class � and the new mode location estimate, d̂�=

∑
i ŝ
�
max; i=k

� − ŝ (new)max , falls in the interval
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(û�=2; û1−�=2). If it does, classify the new curve as belonging to variant status �. Otherwise,
check if it falls into the con�dence interval for the next class in the training set. As in the
parametric approach, the hypotheses are tested in order, starting with the most likely class,
the wild-type, to re�ect existing prior knowledge about class membership.
If the number of curves in a class in the training set is very small, as in our examples where

there are only two curves of a variant, then it is not possible to obtain exact 100(1−�) per cent
coverage for the con�dence interval for this class. In this situation, under the assumption that
the distributions of the di�erences are approximately equal for di�erent classes, the 100(1−�)
per cent con�dence interval obtained for the wild-type curves can be used to test the hypothesis
for the variant class as well. This assumption is reasonable, if the variability between curves
does not depend on the variant.
This bootstrap is a fast way of classifying the curves, as the con�dence intervals for each

class in the training set need to be calculated only once. The classi�cation of a new observation
requires only �nding the abscissa of its largest mode.

5. DATA EXAMPLES

In this section we present classi�cation results on amplicon 1-20 and amplicon 1-11G from
BRCA1 based on samples from the Radiologic Technologists Health Study. BRCA1 consists
of 35 amplicons, and BRCA2 of 47 amplicons. All have to be analysed to get full information
on the prevalence and number of di�erent variants in these two genes. This is also true if
one is interested in determining the carrier status of a single individual. An individual can be
classi�ed to be a ‘variant carrier’ if she has a variant in any of the 82 amplicons.
The training set for amplicon 1-20, BRCA1, consists of �ve wild-type curves and two

curves corresponding to a variant that we call ‘variant one’. The set does not represent a
random sample from the population; it has been enriched by variant one carriers, but no
inference about the prevalence of this variant in the population can be drawn. Each curve for
this amplicon is based on 1501 points. The curves of the training set are plotted in Figure 1.
The wild-type chromatograms as well as the variant one curves appear bimodal, and the
location of the highest mode of the variant one curves is to the left of the highest mode of
wild-type curves.
First, we use the parametric approach described in Section 3.3 to classify a data set that

contains 49 new curves for amplicon 1-20. The DNA of every subject in this sample was
sequenced as well, to determine the true carrier status. The curves in the training set are
best �t with a two-component Gaussian-Gaussian model. The residual sums of squares are
0:7629; 0:8518; 0:5060; 2:6343 and 1.2147 for the wild-type curves and 1.3769 and 0.7712 for
the variant one curves. Table I shows the estimates of the maximal mode for each curve in
the training set based on the Gaussian-Gaussian two-component model as well as the empirical
estimate for the mode derived directly from the curve. The two estimates are very close for all
curves, with the di�erences ranging from 0.0089 for the second wild-type curve, to −0:0580
for the last variant one curve.
As there are only two curves in the training set that represent variant one, the estimates

of the superpopulation variance from these data will be poor. We thus assume that �0 is
the same for the wild-type and the variant one curves. This assumption is reasonable if the
variability between curves does not depend on the variant.
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Table I. Estimates of the location of the main mode for amplicon 1-20, BRCA1.

Variant Parametric model Empirical estimate

Wild-type 1.3042 1.2900
Wild-type 1.2223 1.2134
Wild-type 1.2817 1.2700
Wild-type 1.3994 1.3734
Wild-type 1.4053 1.3817
Variant 1 0.8204 0.8317
Variant 1 0.8889 0.8784

All the new curves are best �t with a two component Gaussian-Gaussian model as well.
Table II tabulates the results for the test statistics Zwt and Zv1 from (7) for the parametric
model. The parametric approach correctly classi�es all curves. One curve is classi�ed as a
variant one curve, 46 curves are wild-type curves and two curves are classi�ed as ‘neither
wild-type nor variant one’. Sequencing those two curves reveals the presence of a new variant
(see Table II). Figure 4 shows one of the variant two curves, together with a wild-type and
a variant one curve for reference.
The values of the test statistic Z� for the parametric model are quite large when the curve

is not a member of variant class �. For example, Zv1=−18:13 for the �rst curve. This is also
the case when a chromatogram is not a member of any of the classes in the training set. For
example Zwt=7:97 and Zv1=−7:344 for the last curve in the data set (Table II), which is
in fact a variant two curve. In our examples, as well as in unreported data, there never was
an ambiguous situation that would lead us to classify a curve as belonging to two di�erent
classes. This supports the strategy of classifying a curve as a member of variant class � if
H�
0 cannot be rejected without testing all remaining hypotheses.
For the bootstrap classi�cation, B=5000 bootstrap replications were used. The 95 per cent

bootstrap con�dence interval for d�=
∑

i ŝ
�
max; i=k

� − s (new)max is (−0:0974; 0:1010) for the wild-
type curves. As there are only two variant one curves in the training set, the 100(1− �) per
cent con�dence interval cannot be obtained, and we use the wild-type con�dence interval to
classify all curves. The bootstrap procedure also classi�es all curves correctly. The values of
d�=

∑
i ŝ
�
max; i=k

�− ŝ (new)max for each new curve are given in Table II. For the bootstrap procedure
as well, the values of d� are rather large when the new curve is not a member of class �.
For the second example, we classify curves from amplicon 1-11G, BRCA1. Each curve

for this amplicon is based on 2000 points. Four wild-type and two variant one curves were
included in the training sets. The training curves are shown in Figure 3. The variant curves
are clearly bimodal, with the higher mode on the left side, while the wild-type curves have a
shoulder to the left of the higher mode.
We classify 53 new curves. Again, the true carrier status for these curves is known from

sequencing.
For the parametric procedure the curves in the training set are again best �t with a two-

component Gaussian-Gaussian model. Table III contains the estimates of the maximal mode
for each curve in the training set, based on the Gaussian-Gaussian two-component model and
the corresponding empirical mode estimate. The di�erence between the estimates is slightly
bigger than for amplicon 1-20, ranging from 0:0222 for the fourth wild-type curve to 0:0634
for the �rst wild-type curve.
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Table II. Classi�cation results for amplicon 1-20.

True status Class(par) Class(boot) Zwt Zv1 dwt dv1

wt wt wt 0.4526 −18:1367 0.0157 −0:4427
wt∗ wt wt 0.6374 −17:8755 0.0123 −0:4461
wt wt wt 1.1947 −17:1118 0.0140 −0:4444
wt wt wt 1.2619 −17:0178 0.0173 −0:4411
wt wt wt 0.9270 −17:4804 0.0123 −0:4461
wt wt wt 0.4365 −18:1556 0.0223 −0:4361
wt wt wt −0:2537 −19:1087 −0:0143 −0:4727
wt wt wt 1.6154 −16:5094 −0:0277 −0:4861
wt wt wt −0:5685 −19:5340 −0:0643 −0:5227
wt wt wt 0.5533 −17:9894 −0:0510 −0:5094
wt wt wt −0:0084 −18:7721 −0:0510 −0:5094
wt wt wt −0:9676 −20:0922 −0:0077 −0:4661
wt wt wt −1:3710 −20:6530 −0:0643 −0:5227
wt wt wt −1:3628 −20:6232 −0:0393 −0:4977
wt wt wt −0:3728 −19:2732 −0:0327 −0:4911
wt wt wt −1:5803 −20:9355 −0:0477 −0:5061
wt wt wt −0:8885 −19:9850 −0:0693 −0:5277
wt wt wt −0:7486 −19:7914 −0:0293 −0:4877
wt wt wt −1:1017 −20:2794 −0:0677 −0:5261
wt wt wt −1:3844 −20:6499 −0:0743 −0:5327
wt wt wt −0:6984 −19:7176 −0:0410 −0:4994
wt wt wt −1:7905 −21:2184 −0:0193 −0:4777
wt wt wt −1:9644 −21:4620 −0:0427 −0:5011
wt wt wt −0:9658 −20:0881 −0:0577 −0:5161
wt wt wt −0:7293 −19:7663 −0:0460 −0:5044
wt wt wt −1:9068 −21:3874 −0:0710 −0:5294
v1 v1 v1 12.3074 −1:7806 0.4273 −0:0311
wt wt wt −0:4972 −19:4452 −0:0427 −0:5011
wt wt wt −0:9731 −20:0996 −0:0577 −0:5161
wt wt wt −1:3281 −20:5732 −0:0577 −0:5161
wt wt wt −0:9980 −20:1296 −0:0460 −0:5044
wt wt wt −1:4942 −20:8188 −0:0710 −0:5294
wt wt wt −0:4211 −19:3357 −0:0193 −0:4777
wt wt wt −1:1530 −20:3479 −0:0543 −0:5127
wt wt wt −0:3288 −19:2071 −0:0110 −0:4694
wt wt wt −0:9557 −20:0716 −0:0343 −0:4927
wt wt wt −0:3824 −19:2801 −0:0127 −0:4711
n n n 7.9605 −7:3443 0.2207 −0:2377
wt wt wt −1:0016 −20:1370 −0:0343 −0:4927
wt wt wt −1:5132 −20:8433 −0:0643 −0:5227
wt wt wt −2:4054 −22:0691 −0:0877 −0:5461
wt wt wt −2:4660 −22:1467 −0:0943 −0:5527
wt wt wt −1:7992 −21:2372 −0:0627 −0:5211
wt wt wt −1:2669 −20:5001 −0:0460 −0:5044
wt wt wt −1:6169 −20:9696 −0:0660 −0:5244
wt wt wt −1:5693 −20:9053 −0:0643 −0:5227
wt wt wt −1:7431 −21:1315 −0:0677 −0:5261
wt wt wt −1:8590 −21:2876 −0:0760 −0:5344
n n n 7.9605 −7:3443 0.2207 −0:2377
wt, wild-type; v1, variant 1; n, not classi�ed; par, parametric; boot, bootstrap.
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Figure 4. Curves representing all three variants observed at amplicon 1-20.

Table III. Estimates of the location of the main mode for amplicon 1-11G.

Variant Parametric model Empirical estimate

Wild-type 2.4768 2.4134
Wild-type 2.4610 2.4284
Wild-type 2.4695 2.4367
Wild-type 2.3739 2.3517
Variant 1 0.9369 0.8867
Variant 1 0.8963 0.8534

Similarly to amplicon 1-20, all the new curves are best �t with a two-component Gaussian-
Gaussian model. In this example the parametric approach correctly classi�es all but one curve.
This curve, which is in fact a wild-type curve, is classi�ed as ‘neither wild-type nor variant
one’. The value of the test statistic is Zwt=3:3126, while the corresponding quantile of the
t-distribution is t0:975;3=3:1824, and Zv1=−41:7490 (see Table IV). Even though we reject
the hypothesis that this curve is a wild-type curve, the evidence for our having truly observed
a new variant is weak.
Thirteen curves are correctly identi�ed as not belonging to any of the classes of the training

set, and their sequences determine that they are members of a new class, which we call variant
two. Figure 5 shows a plot of one of the chromatograms that falls into the new variant two
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Table IV. Classi�cation results for amplicon 1-11G.

True status Class(par) Class(boot) Zwt Zv1 dwt dv1

wt wt wt 0.4128 −26:9215 −0:0059 −1:5434
wt wt wt −0:3590 −44:8111 −0:0342 −1:5717
v2 n n 20.7393 −27:2496 0.6175 −0:9200
wt wt wt 0.4531 −44:1501 0.0041 −1:5334
v2 n n 21.2839 −26:9558 0.5975 −0:9400
wt wt wt −0:5660 −44:9863 −0:0209 −1:5584
wt wt wt 0.5513 −44:0486 −0:0109 −1:5484
wt wt wt 0.4992 −44:0966 −0:0075 −1:5450
wt wt wt −0:1382 −44:5939 −0:0292 −1:5667
wt wt wt 0.8582 −43:7848 0.0025 −1:5350
wt wt wt 0.9020 −43:6745 0.0091 −1:5284
wt wt wt −0:0943 −44:5847 −0:0209 −1:5584
v2 n n 23.7445 −24:9413 0.6591 −0:8784
wt wt wt −0:0104 −44:5211 −0:0192 −1:5567
v2 n n 16.3387 −28:8077 0.6108 −0:9267
wt wt wt 0.5160 −44:0505 −0:0175 −1:5550
v2 n n 21.8348 −26:0054 0.5858 −0:9517
v2 n n 22.1074 −25:9412 0.6141 −0:9234
wt wt wt 0.9780 −43:6335 −0:0059 −1:5434
wt wt wt 0.0978 −44:3976 −0:0175 −1:5550
wt wt wt 1.2814 −43:4810 0.0225 −1:5150
wt wt wt 1.4024 −43:3526 0.0325 −1:5050
wt wt wt 2.0188 −42:7424 0.0241 −1:5134
wt wt wt 2.3226 −42:4494 −0:0092 −1:5467
wt wt wt 0.8113 −43:8056 0.0041 −1:5334
v1 v1 v1 52.5499 −1:1439 1.4541 −0:0834
wt wt wt 1.7125 −43:0881 0.0391 −1:4984
wt wt wt 0.5257 −44:0949 −0:0025 −1:5400
wt wt wt 2.5726 −42:4344 0.0558 −1:4817
wt wt wt 1.9570 −42:8962 0.0325 −1:5050
v2 n n 24.5316 −24:2195 0.6975 −0:8400
v2 n n 21.5538 −25:5490 0.6858 −0:8517
v2 n n 25.1516 −23:2852 0.7141 −0:8234
v2 n n 24.1747 −23:7721 0.6175 −0:9200
wt wt wt 1.8320 −42:9102 0.0158 −1:5217
wt wt wt 1.9620 −42:7743 0.0308 −1:5067
wt wt wt 2.0222 −42:8812 0.0491 −1:4884
wt wt wt 2.3067 −42:6301 0.0591 −1:4784
v1 v1 v1 53.9196 −0:1591 1.5208 −0:0167
v2 n n 23.4827 −25:1084 0.7008 −0:8367
wt wt wt 1.3100 −43:3950 0.0158 −1:5217
wt wt wt 1.0145 −43:6701 0.0041 −1:5334
v2 n n 19.7685 −25:7300 0.7058 −0:8317
wt wt wt 2.1824 −42:6301 0.0225 −1:5150
v2 n n 25.2212 −23:6839 0.7458 −0:7917
wt wt wt −0:0082 −44:4704 0.0325 −1:5050
wt∗ n wt 3.3126 −41:7490 0.0625 −1:4750
wt wt wt 1.3818 −43:3726 0.0291 −1:5084
wt wt wt 1.6380 −43:1168 0.0108 −1:5267
wt wt wt 0.9039 −43:7673 0.0041 −1:5334
wt wt wt 1.1593 −43:5383 −0:0025 −1:5400
wt wt wt 0.5466 −44:0464 −0:0075 −1:5450
v1 v1 v1 54.2031 0.1553 1.5541 0.0166

∗Marks the misclassi�ed curve.
wt, wild-type; v1, variant 1; n, not classi�ed; par, parametric; boot, bootstrap.
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Figure 5. Curves representing all three genotypes observed at amplicon 1-11G.

class, together with a wild-type and a variant one curve for comparison. Three curves that
are variant one curves, and all remaining curves that are wild-type, are correctly categorized.
For the bootstrap classi�cation, B=5000 bootstrap replications were used. The 95 per cent

bootstrap con�dence interval for d�=
∑

i s
�
max; i=k

� − s(new)max , is (−0:1887; 0:2097) for the wild-
type curves. The bootstrap procedure classi�es all curves correctly.

6. DISCUSSION

dHPLC is highly sensitive, with sensitivity and speci�city approaching 100 per cent, has fast
analysis times (less than seven minutes per run [6]), does not require post-PCR manipulation,
and is favourable to pooling samples, which further lowers its already low cost per run. It
has a wide range of applications, including genotyping, haplotyping and mutation detection,
that are important for disease detection and analysis. In this paper we develop two methods
of classifying dHPLC curves by comparing their most discriminating feature, the location
of the main mode, to the same characteristic of curves with known variant status in the
training set.
The �rst approach consists of �tting a non-linear regression model to the curves. The

choice of the non-linear regression function is motivated by the fact that the main features of
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chromatograms are the number and location of the peaks of the curves. Estimates of individual
curve parameters are obtained via least squares. Between-curve variation is accounted for
by a hierarchical model, which assumes that the individual curve parameters arise from a
superpopulation. Even though we model the whole chromatogram, the classi�cation procedure
is based on comparing the location of the maximal mode of a newly observed curve to
the location of the mean of the modes of each class in the training data. The location of
the maximal mode was the most discriminating feature in all the chromatograms that we
considered.
For the second approach we estimate the maximal modes empirically. The cut-o� values

for the test of equality of the modes are found through a bootstrap procedure.
By ordering the hypotheses according to the frequency of occurrence of the variants in the

training set, we incorporate some prior knowledge about how likely it is that a new curve
belongs to a class in the training set. As wild-type is the most likely outcome, it is the �rst
hypothesis we test. Even if the training set were a random sample of the population, it is
still somewhat di�cult to assign a prior probability to the event that a curve falls into a new
class. This can be especially challenging in populations that are prone to admixture, in which
more variants are expected to be present.
Both methods are used to classify curves for amplicons of BRCA1 and their performance is

compared. In our examples the classi�cation based on only the largest mode works very well,
as this feature is the most discriminating one for the given amplicons, even with training sets
that contain only two curves for a given variant. Only one out of 102 curves was misclassi�ed
by the parametric approach, identi�ed as ‘not in a previously observed class’ when in fact it
was a wild-type curve. The bootstrap testing procedure classi�ed all curves correctly.
Amplicons for other genes may require more complex measures for discrimination. For

example, if the curve appears to be bimodal with the two peaks close in height, a test based on
the location of both modes may be more appropriate. The most general approach to classifying
chromatograms is to test for the locations and relative heights of all observed modes. The
parametric procedure easily generalizes to this situation. As the whole curve is modelled
in the parametric regression approach, only the test statistic has to be adapted to a more
general classi�cation algorithm. In principle any function of the parameters can be used for
discrimination of the curves. The variance of the test statistic for a function of the parameters
can be found by applying the delta method. It is desirable to keep the dimensionality of the
testing problem low, as the lower dimensional the testing problem is, the more powerful the
test will be. It is thus recommended that one �nd the most parsimonious characterization that
discriminates the curves well. While the parametric procedure does not require much further
work to be adapted to a more complex procedure, the empirical approach becomes more
involved, as di�erent features of the curve have to be estimated from the curves. It is also
harder to de�ne a bootstrap con�dence set for a multi-dimensional quantity.
Even though our examples are restricted to dHPLC curves from a single gene, BRCA1,

chromatograms seen in many other unreported analyses are similar in shape and characteristics
and our classi�cation technique will work well for them.
The methods developed in this paper apply to chromatograms based on individual DNA

samples. dHPLC may also be used to analyse pools of DNA. Future work will include devel-
oping methods to determine if a curve that is based on pooled DNA from several individuals
contains one or more subjects who carry a variant and to classify the variant present in
the pool.
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